Lecture 08: Nanomaterials Characterization I

Lecture 08: table of contents

- 1 Introduction to spectroscopy
- 2 Ultraviolet-visible spectroscopy
- 3 Infrared spectroscopy
- 4 Raman spectroscopy

Introduction to Spectroscopy

Characterization methods

Nanomaterial characterization methods

Structural characterization

X-ray diffraction

Small angle X-ray scattering

Electron microscope

Scanning electron microscope

Transmission electron microscope

Scanning probe microscope

Scanning tunneling microscope

Atomic force microscope

Gas physical and chemical adsorption

Chemical characterization

Optical spectroscopy

UV-visible spectroscopy

FT-IR spectroscopy

Raman spectroscopy

Electron spectroscopy

Energy dispersive spectroscopy

Electron probe micro analyser

Electron energy loss spectroscopy

Auger electron spectroscopy

X-ray photoelectron spectroscopy

Spectroscopy

Spectroscopy is the study of the interaction between matter and electromagnetic radiation.

History of spectroscopy

Sir Issac Newton (1643 ~ 1727)

- Advances in optics, specifically prisms, enabled systematic observations of the solar spectrum.
- Isaac Newton first applied the word spectrum to describe the rainbow of colors that combine to form white light.

History of spectroscopy

Joseph von Fraunhofer (1787 ~ 1826)

Fraunhofer lines

- a. Solids, fluids and high-pressure gases emit a continuous spectrum.
- b. When the light passes through a low-density cold gas, specific colors of light are absorbed.
- c. A low-density hot gas emits a line spectrum.

History of spectroscopy

Gustav Robert Kirchhoff (1824 ~ 1887)

- A flame test is an analytic procedure used in chemistry to detect the presence of certain elements.
- Based on each element's characteristic, different emission spectrum is shown.
- The color of flames in general also depends on temperature.

Atom models: historical time line

Classical mechanics vs. Quantum mechanics

Classical mechanics

Quantum mechanics

Max Planck

Quantum mechanics: electron cloud

Classical mechanics

Quantum mechanics

Wave function
$$\psi(r,\theta,\phi) = \frac{1}{4} \left(\frac{1}{2\pi a_0^5}\right)^{1/2} re^{-r/2a_0} \sin\theta\cos\phi$$

Quantum mechanics: tunnel effect

Particle cannot go Particle through the wall Classical mechanics Wave Wave is reflected by the Wall **Quantum mechanics** ... but some portion can go through the Wall

Energy level of atoms

Orbitals of atoms

Example: carbon orbital

All s orbitals are spherical, and their size increases with increasing principal quantum number.

The three p orbitals are dumbshell-shaped and are oriented along the three perpendicular x, y, and z axes.

Three principles for electron configuration

Electron configuration in orbitals

1. Building-up principle

2. Pauli exclusion principle

3. Hund's rule

 $9 \ \ F \ 1s^2 2s^2 2p^5, [He] 2s^2 2p^5 \quad 10 \ \ Ne \ 1s^2 2s^2 2p^6, [He] 2s^2 2p^6$

Electron configuration diagrams

Examples: silicon and copper

Elemental property with electron configuration

Silicon (Si)

 $1s^22s^22p^63s^23p^2$

- Si has 14 electrons in 3 shells
- The valence shell has 4 electrons.
- Half-full valence shell gives semiconductor property

Copper (Cu)

 $1s^22s^22p^63s^23p^63d^{10}4s^1$

- Cu has 29 electrons in 4 shells
- The valence shell has 1 electrons.
- Single valence electron makes copper a good conductor.

Excited state of electron

Hydrogen atom

Absorption and emission

Example of spectrums: atom

Example of spectrums: atom

Energy levels: atom vs. molecule

Electronic energy levels: molecule

Molecular orbital (MO) of ethene

Electronic energy levels: molecule

Molecular orbital (MO) of s orbitals

Electronic energy levels: molecule

Molecular orbital (MO) of p orbitals

Electronic energy levels: molecule

Molecular orbital (MO) of p orbitals

Electronic energy levels: molecule

Bonding, antibonding, nonbonding in molecular orbital (MO)

Electronic energy levels: molecule (example)

Atomic orbital (AO) of oxygen + Molecular orbital (MO) of hydrogen = water (H_2O)

- $2a_1$ MO: oxygen 2s AO + hydrogen σ MO
- $1b_2$ MO: oxygen $2p_y$ AO + hydrogen σ^* MO
- $3a_1$ MO: oxygen $2p_z$ AO + hydrogen σ MO
- 1b₁ (nonbonding MO): oxygen 2px AO

Vibrational energy levels: molecule

Vibrational motions

Example of spectrums: molecule

Theoretical spectrum of C₂H₄

Experimental spectrum of C₂H₄

Example of spectrums: molecule

Classification of spectroscopy

Ultraviolet-visible Spectroscopy

Instrument diagram and image

1. Light sources

- UV source: deuterium (D_2) lamp emit radiation in the range of 160 ~ 375 nm.
- Visible source: tungsten (W) filament lamp is commonly employed in the range of 350 ~ 2500 nm.

2. Monochromator (wavelength selector): prism and grating

3. Cuvette

- The containers for sample and reference solution must be transparent to the radiation which will pass through them (quartz or fused silica).

4. Detector

- The photomultiplier tube is a commonly used detector in UV-Vis spectroscopy.

Monochromator (wavelength selector)

Instrument diagram

Double beam spectrometer

Transmittance and absorbance (Beer-Lambert law)

Transmittance (*T*): $T = I / I_0$

Absorbance (*A*): $A = \log_{10} I_0 / I = \log_{10} 1 / T$

Beer-Lambert law

$$A = \log_{10} I_0 / I = \varepsilon bc$$

Standard samples \vec{a}_1 \vec{a}_2 \vec{a}_3 \vec{a}_4

 ε : molar absorbtivity (L/mol·cm)

b: path length of the sample (cm)

c: concentration of compound in solution (mol/L)

Unknown sample

Electron transitions of molecular energy level

Ground State

UV/Vis

increase in orbital energy

Wavelength

Visible: 400 ~ 750 nm

Ultraviolet (UV): 200 ~ 400 nm Vacuum UV or Far UV: ~ 200 nm

Electron transitions of molecular energy level

$\sigma \rightarrow \sigma^*$ transitions

- 1. An electron in a bonding s orbital is excited to the corresponding antibonding.
- 2. The required energies to these transitions are very large.
- 3. Methane shows an absorbance maximum at 125 nm which is not seen in typical UV-visible spectra.

$n \rightarrow \sigma^*$ transitions

- 1. Saturated compounds containing atoms with lone pairs (nonbonding) are capable for these transitions.
- 2. These transitions usually need less energy than $\sigma \to \sigma^*$ transitions.
- 3. They can be initiated by light whose wavelength is in the range of $150 \sim 250$ nm.

$n \to \pi^*$ transitions and $\pi \to \pi^*$ transitions

- 1. Most absorption spectroscopy of organic compounds is based on these transitions.
- 2. These transitions are belong to an experimentally convenient region of the wavelength (200 ~ 700 nm).
- 3. These transitions need an unsaturated group in the molecule to provide the π electrons.

UV-visible spectroscopy analysis

Typical absorbance spectra of carbonyl group

Functional group	λ_{max} (nm)		
	strong	weak	
	$\pi{ ightarrow}\pi^*$	$n{ ightarrow}\pi^*$	
C=O	166	280	
C=C-C=O	240	320	
C=C-C=C-C=O	270	350	

UV-visible spectroscopy analysis in nanotechnology

UV-visible spectroscopy analysis in nanotechnology

UV-visible spectrum (shape dependent on Au nanomaterials)

UV-visible spectrum (time dependent on Cu²⁺ reduction)

UV-visible spectroscopy analysis in nanotechnology

Compositional analysis on AuAg alloy nanoparticles

Infrared Spectroscopy

What is infrared (IR)?

Classification of IR spectrum depending on wavelength

Wavelength range (λ)

- Near-IR (NIR): $(0.7 \sim 1)$ to 5 μm
- Middle-IR (MIR): 5 to (25 \sim 40) μm
- Far-IR (FIR): (25 ~ 40) to (200 ~ 350) μm

Instrument diagram and image

1. Light source

- Infrared (IR) source: Nernst lamp (ZrO₂, CeO₂, THO₂) or Globar lame (SiC)

2. Sample

- Powder samples are generally used in IR spectroscopy.

3. Monochromator (wavelength selector)

- Prism: NaCl $(670 \sim 4000 \text{ cm}^{-1})$, KBr $(250 \sim 670 \text{ cm}^{-1})$, LiF $(2000 \sim 10000 \text{ cm}^{-1})$
- Blazed grating: a special type of diffraction grating

4. Detector

- Thermocouple, pyroelectric (triglycine sulfate) and photoconductive (PbS, CdTe, InSb) detectors are commonly used in IR spectroscopy.

Signal processing (Fourier Transform)

[http://www.slideshare.net/muttaqinpapasafira/principles-of-ftir]

Molecular energy

Molecular energy

$$\mathbf{E} = \mathbf{E}_{\text{electronic}} + \mathbf{E}_{\text{vibration}} + \mathbf{E}_{\text{rotation}} + \mathbf{E}_{\text{transition}}$$

Electronic

Electron moving between electron shells

Vibrational

Stretching and compressing of the bond lengths and bond angles

Rotational

spinning around

Translational

moving of the whole particle from one place to another

Hooke's law

Robert Hooke (1635 ~ 1703)

Hooke's law

$$F = -kx$$

F: forces needed to extend or compress a spring

k: spring constant

x: distance

Molecular vibration (Hooke's law)

If the molecular vibration is harmonic oscillator...

$$v = \frac{1}{2\pi c} \sqrt{\frac{K}{\mu}}$$

v: frequency (cm⁻¹)

c: light velocity (3 \times 10¹⁰ cm/s)

K: force constant (dyne/cm)

m: atomic mass

 μ : reduced mass of atoms, $m_1 \cdot m_2 / (m_1 + m_2)$

Molecular vibration (energy levels)

Molecular vibration (example)

Net dipole moment

Carbon dioxide (CO₂)

Net dipole moment = 0

IR inactive

Water (H₂O)

Net dipole moment $\neq 0$

IR active

Molecular vibration (example)

Example: vibrations of methylene group ($-CH_2$ -)

Molecular vibration (example)

Example: Fourier transform-infrared (FT-IR) spectrum of formaldehyde

FT-IR spectroscopy analysis in nanotechnology

Evidence for the existence of functionalized groups on Pt nanoparticle

FT-IR spectroscopy analysis in nanotechnology

Evidence for the existence of C_{120} structures

Raman Spectroscopy

Raman scattering

Rayleigh and Raman stokes/anti-stokes scattering

Raman scattering

Rayleigh and Raman stokes/anti-stokes scattering

Stokes lines are those in which the photon has lost energy to the molecule.

$$v_{\rm ex}$$
 - $v_{
m v}$

Anti-Stokes lines are those in which the photon has gained energy from the molecule.

$$v_{\rm ex} + v_{\rm v}$$

The strongest scattering is Rayleigh scattering.

Raman scattering

Rayleigh and Raman stokes/anti-stokes scattering

Raman scattering intensity

: 1 in 10⁷ photons is scattered inelastically.

Instrument diagram and image

Light source 500 ~ 700 nm laser

Elastic scattered light :Rayleigh scattering

Inelastic scattered light

:Raman stokes/anti-stokes scattering

Raman spectrums (example)

FT-IR spectroscopy vs. Raman spectroscopy

FT-IR spectroscopy (dipole moment)

Permanent dipoles (AB: HF)

Instantaneous dipoles (A₂: Br₂)

Induced dipoles (O₂ by H₂O)

Raman spectroscopy (polarzability)

p: induced dipole moment α : polarizability (C·m²/V) E: electric field

Polarizability is the ability for a molecule to be polarized.

FT-IR spectroscopy vs. Raman spectroscopy

Vibrational modes of CO₂

Symmetric C-O stretching

Raman: active (change in polarizability)
IR: inactive (no change in dipole moment)

Bending

Raman: inactive (no change in polarizability)
IR: active (change in dipole moment)

Asymmetric C-O stretching

Raman: inactive (no change in polarizability)
IR: active (change in dipole moment)

FT-IR spectroscopy vs. Raman spectroscopy

Spectrum comparison

FT-IR spectrum

Raman spectrum

In 3000 cm⁻¹ region

FT-IR: NH₃⁺ vibration

Raman: CH and CH₂ stretching

In 1600 cm⁻¹ region

FT-IR: NH₃⁺ deformation

Carboxylate asymmetric vibration

Raman: very weak signal

In 410 cm⁻¹ region

FT-IR: weak signal

Raman: -S-S- stretching

FT-IR spectroscopy vs. Raman spectroscopy

Spectrum comparison

Oleic acid methyl ester

$$CH_3(CH_2)_6CH_2$$
 $C=C$ CH_2 $(CH_2)_5$ CH_2 CH_2 CH_2

FT-IR spectroscopy vs. Raman spectroscopy

	Frequency (cm ⁻¹)	IR^a	Raman ^b	
Alkanes	*	100		
CH ₃ sym stretch	2862-2882	vs	vs	
C-C stretch	1040-1100	_	S	
Cyclopentane ring breathing	889	-	s	
Alcohol O-H stretch	3635-3644	m	w	
Acetylene C-H bend	825-640	S	w	
Acetylene C≡C	2230-2237	_	s	
C≡N stretch in R—CN	2230-2250	S	vs	
Cyanate C≡N	2245-2256	S	vs	
C—H in R—CHO	2800-2850	m	_	
C=O in R—CHO	1730-1740	vs	w	
R-NO ₂ asym stretch	1530-1600	vs	m-w	
R-NO ₂ sym stretch	1310-1397	S	vs	
C—S stretch	580-704	_	vs	
S—H stretch	2560-2590	w	s	
R ₂ S ₂ S - S stretch	507-512	m-w	s	vs = very strong
Benzene ring breathing	992	_	vs	s = strong
Primary R—Cl	650-660	S	s	m = medium
Primary R — Br	565-560	s	vs	w = weak
Primary R—I	500-510	S	vs	dash = absent

FT-IR spectroscopy vs. Raman spectroscopy

FT-IR spectroscopy

Advantages

- Simple instrumentation
- Fast measurement
- Available for low concentrated samples

Disadvantages

- High priced detector
- Dissolution problem with aqueous solutions

Raman spectroscopy

Advantages

- Well-suited for aqueous solutions
- No sample preparation necessary
- Bands below 400 cm⁻¹ are measurable.

Disadvantages

- Strong laser is required.
- Lower sensitivity because scattering effect is weaker.
- Fluorescence of sample may overlap with the signal

Raman spectroscopy analysis in nanotechnology

Functional polymers on Au nanoparticles

Raman spectroscopy analysis in nanotechnology

Internally etched (IE) Au@SiO₂ core-shell nanoparticles

Raman spectroscopy analysis in nanotechnology

Conceptual diagram of surface enhanced Raman spectroscopy (SERS)

Raman spectroscopy analysis in nanotechnology

Phosphoric acid adsorption on Au surface

