Introduction to Chemical Engineering

Chapter 09

Reaction Engineering
(What Size Reactor?)

Introduction to Chemical Engineering

9.1 Describing reaction rates

$>$ A chemical reaction is a process that leads to the transformation of one set of chemical substances to another (reactant \rightarrow product).
> Basic reaction types

Introduction to Chemical Engineering

9.1 Describing reaction rates

> Kinetics vs. Thermodynamics

Introduction to Chemical Engineering

9.1 Describing reaction rates

> Questions about kinetics

- Question 1: What physical variables affect the rate of a reaction between two chemical species?
- Question 2: How do we describe the rate of reaction?

Introduction to Chemical Engineering

9.1 Describing reaction rates

> What physical variables affect the rate of a reaction between two chemical species?

- Answer 1: Frequency of molecular collision (concentration, phase, temperature, pressure...)

Concentration

Temperature

Pressure

Introduction to Chemical Engineering

9.1 Describing reaction rates

$>$ What physical variables affect the rate of a reaction between two chemical species?

- Answer 2: Orientation and force of the collision

$$
\mathrm{CO}+\mathrm{NO}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{NO}
$$

Incorrect orientation

Correct orientation

Insufficient force

Introduction to Chemical Engineering

9.1 Describing reaction rates

$>$ What physical variables affect the rate of a reaction between two chemical species?

- Answer 2: Orientation and force of the collision

Activated complex

Introduction to Chemical Engineering

9.1 Describing reaction rates

$>$ What physical variables affect the rate of a reaction between two chemical species?

- Answer 3: Energy requirements of the reaction

Activation energy $\left(E_{a}\right)$

Introduction to Chemical Engineering

9.1 Describing reaction rates

> What physical variables affect the rate of a reaction between two chemical species?

- Answer 3: Energy requirements of the reaction

$$
\mathrm{CO}+\mathrm{NO}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{NO}
$$

Exothermic Reaction

$$
\mathrm{CO}_{2}+\mathrm{NO} \rightarrow \mathrm{CO}+\mathrm{NO}_{2}
$$

Endothermic Reaction

Introduction to Chemical Engineering

9.1 Describing reaction rates

$>$ What physical variables affect the rate of a reaction between two chemical species?

- Answer 3: Energy requirements of the reaction

Catalyst

(1) One of the reactants approaches the catalyst's surface and settles onto an active site - ADSORPTION
(2) Another reactant approaches the catalyst
(3) Re-arrangement of electrons takes place-REACTION
(4) The products are released from the surface-DESORPTION

Introduction to Chemical Engineering

9.1 Describing reaction rates

> What physical variables affect the rate of a reaction between two chemical species?

- Answer 3: Energy requirements of the reaction

Irreversible reaction

Backward reaction rate

Net rate of reaction
Reversible reaction

Introduction to Chemical Engineering

9.1 Describing reaction rates

> How do we describe the rate of reaction?

1. For irreversible reaction $\quad A+B \rightarrow C+D$

For liquid phase

$$
\text { reaction rate }\left(\text { in units of } \frac{\text { moles of } A}{\text { time volume }}\right)=r_{\text {reaction }, A}=k_{r} c_{A}^{n} c_{B}^{m}
$$

For gas phase

$$
\text { reaction rate }\left(\text { in units of } \frac{\text { moles of } A}{\text { time volume }}\right)=r_{\text {reaction }, A}=k_{r} p_{A}^{n} p_{B}^{m}
$$

Reaction order

$n^{\text {th }}$ for species A
$m^{\text {th }}$ for species B
$(n+m)^{\text {th }}$ for overall

Reaction rate constant

$$
\begin{array}{ll}
k_{r}=k_{0} e^{-E a / R T} & k_{0}=\text { frequency factor (with the same units as } k_{r} \text {) } \\
E_{a}=\text { activation energy (energy/mole) } \\
R=\text { universal gas constant } \\
& T=\text { reaction temperature (absolute) }
\end{array}
$$

Introduction to Chemical Engineering

9.1 Describing reaction rates

> How do we describe the rate of reaction?

Elementary reactions

: the order of reaction with respect to each of the reactants matches the stoichiometry of the reaction equation.

$$
2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2} \quad r_{\text {reaction }, \mathrm{NO}}=k_{r} c_{\mathrm{NO}}^{2} c_{O_{2}}
$$

Other reactions (in many cases)

: the order of reaction in the reaction rate equation do not match the stoichiometry of the reaction.

$$
\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \quad r_{\text {reaction }, \mathrm{CO}}=k_{r} c_{C O} C_{H_{2} O}^{0.5} c_{o_{2}}^{0.25}
$$

Introduction to Chemical Engineering

9.1 Describing reaction rates

$>$ How do we describe the rate of reaction?

For the acid-neutralization reaction,

$$
\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl} \quad r_{\text {reaction }, \mathrm{HCl}}=k_{r} c_{\mathrm{HCl}} c_{\mathrm{NaOH}}
$$

Example 9.1

Ethylene glycol, a common antifreeze, is made from the reaction of ethylene chlorohydrin and sodium bicarbonate as shown below:

The reaction is essentially irreversible and is first-order in each reactant, and the reaction rate constant at $82^{\circ} \mathrm{C}$ is $5.2 \mathrm{~L} / \mathrm{gmol} \mathrm{hr}$ (from reference 1, p. 123).
A reaction mixture at $82^{\circ} \mathrm{C}$ with a volume of 17.5 liters contains ethylene chlorohydrin and sodium bicarbonate, both at concentrations of 0.5 M . What is the reaction rate of ethylene glycol (in $\mathrm{gmol} / \mathrm{hr}$)?

Introduction to Chemical Engineering

9.1 Describing reaction rates

> How do we describe the rate of reaction?
2. For reversible reaction $\quad A+B \leftrightarrow C+D$

For liquid phase

$$
r_{\text {reaction }, A}=k_{r} c_{A}^{n} c_{B}^{m}-k_{r}^{\prime} c_{C}^{r} c_{D}^{s}
$$

For gas phase

$$
r_{\text {reaction }, A}=k_{r} p_{A}^{n} p_{B}^{m}-k_{r}^{\prime} p_{C}^{r} p_{D}^{s}
$$

Introduction to Chemical Engineering

9.1 Describing reaction rates

> How do we describe the rate of reaction?

Desirability

$$
\begin{array}{ll}
A+B \rightarrow C+D & \text { Desired reaction } \\
A+B \rightarrow E+F & \text { Undesired reaction (side reaction) }
\end{array}
$$

Idealized types of reactors

Introduction to Chemical Engineering

9.2 Designing the reactor

> Irreversible reaction
> Continuously stirred tank reactor (CSTR)

Introduction to Chemical Engineering

9.2 Designing the reactor

> Steps for finding reactor volume

1. Perform the material balance analysis for multiple species.
2. Compute the reactor volume.

Example 9.2

Species A in liquid solution (concentration $=0.74 \mathrm{M}$) enters a CSTR at $18.3 \mathrm{~L} / \mathrm{s}$, where it is consumed by the irreversible reaction

$$
A \rightarrow C \quad \text { where } \quad r_{\text {reaction }, A}=k_{r} c_{A} \quad\left(k_{r}=0.015 / s \text { and } c_{A} \text { is in units of gmol } / L\right)
$$

What reactor volume is needed so that the concentration of species A leaving the reactor equals 0.09 M ? The density can be assumed to be constant.

Introduction to Chemical Engineering

9.2 Designing the reactor

Example 9.3

In the design of a process, liquid streams of pure species A and B will enter a CSTR, where they will be consumed by the irreversible reaction:

$$
2 A+B \rightarrow C \quad \text { where } \quad r_{\text {reaction }, A}=k_{r} c_{A} c_{B} \quad\left(k_{r}=24.7 \mathrm{ft}^{3} / \mathrm{lbmol} \mathrm{hr} \text { and } c_{A} \text { and } c_{B} \text { are in units of lbmol/ft}\right)
$$

The molar flow rates of the inlet streams will be

$$
\begin{array}{lr}
\text { Species } A: \dot{n}_{A}=110 \mathrm{lbmol} / \mathrm{hr} & M W=59 \mathrm{lb}_{\mathrm{m}} / \mathrm{lbmol} \\
\text { Species } B: \dot{n}_{B}=68 \mathrm{lbmol} / \mathrm{hr} & M W=133 \mathrm{lb}_{\mathrm{m}} / \mathrm{lbmol}
\end{array}
$$

In the reactor, 90% of species A is to be reacted (i.e., 90% conversion of species A is desired), and the output stream will have a density of $50.5 l b_{\mathrm{m}} / f t^{3}$. What volume must the reactor have?

Introduction to Chemical Engineering

9.2 Designing the reactor

$>$ Neutralization of $\mathbf{H C l}$
Given information

$$
\begin{aligned}
& c_{\mathrm{HC}_{l_{i n}}}=0.014 \mathrm{gmol} / \mathrm{L} \quad \dot{V}_{\mathrm{HC}_{l_{i n}}}=11,600 \mathrm{~L} / \mathrm{hr} \\
& c_{\mathrm{NaOH}_{i n}}=0.0254 \mathrm{gmol} / \mathrm{L} \quad \dot{V}_{\mathrm{NaOH}_{i n}}=6,500 \mathrm{~L} / \mathrm{hr}
\end{aligned}
$$

Reaction

$$
\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}
$$

Reaction rate constant

$$
r_{\text {reaction }, \mathrm{HCl}}=k_{r} c_{H C l} c_{\mathrm{NaOH}} \quad \text { in units of moles of } \mathrm{HCl} \text { or } \mathrm{NaOH} /(\text { volume time })
$$

Reaction rate constant at $25^{\circ} \mathrm{C}$

$$
k_{r, H C l}=1.4 \times 10^{11} \mathrm{~L} / \mathrm{gmol} \mathrm{~s}
$$

Allowed HCl concentration at final state by law ($\mathrm{pH}=6.5$)

$$
c_{H C l}=10^{-6.5}=3.16 \times 10^{-7} \mathrm{M}
$$

Introduction to Chemical Engineering

9.2 Designing the reactor

> Neutralization of HCl

Working diagram

- Mole balance on HCl: $c_{H C l_{\text {lin }}} \dot{V}_{H C l_{\text {in }}}=c_{H C l_{\text {out }}} \dot{V}_{H C l_{\text {out }}}+r_{\text {consumption }, H C l}$
- Mole balance on $\mathrm{NaOH}: c_{\mathrm{NaOH}_{\text {in }}} \dot{V}_{\mathrm{NaOH}_{\text {in }}}=c_{\mathrm{NaOH}_{\text {out }}} \dot{V}_{\mathrm{NaOH}_{\text {out }}}+r_{\text {consumption }, \mathrm{NaOH}}$
- Total mass balance (with constant ρ): $\dot{V}_{H C l_{\text {in }}}+\dot{V}_{\mathrm{NaOH}_{\text {in }}}=\dot{V}_{\text {out }}$
- Additional relationships

$$
\text { Stoichiometry: } \frac{r_{\text {consumption }, \mathrm{HCl}}}{r_{\text {consumproion }, \mathrm{NaOH}}}=\frac{1}{1}=1
$$

Molar flow rate balance: $c_{\text {NaOH }_{i_{i n}}} \dot{V}_{N a O H_{i n}}=c_{H C l_{l n}} \dot{V}_{H C l_{i n}}$

Introduction to Chemical Engineering

9.2 Designing the reactor

> Neutralization of HCl

Process flow diagram (PFD)

Flows kg / h				
Line no. Stream Component	1 Acid feed	2 Base feed	Mixer outlet	ABC Chemical Co.
HCl	6	-	-	Acid neutralization
NaOH	-	6	-	$1 \times 10^{8} \mathrm{~L} / \mathrm{yr}$
$\mathrm{H}_{2} \mathrm{O}$	11594	6490	18096	Sheet no. 1

Introduction to Chemical Engineering

Homework problems

Homework problem 4.

A prevalent form of toxic pollutant NO_{x} formed in power plant combustors is NO . Under favorable conditions, NO can be decomposed ("reduced") via the following reaction:

$$
2 \mathrm{NO} \rightarrow \mathrm{~N}_{2}+\mathrm{O}_{2}
$$

At 1620 K , for a reaction rate expressed in $\mathrm{gmol} / \mathrm{L} s$ and the amount of NO expressed in atmospheres, the reaction rate constant for this irreversible reaction is $0.0108 \mathrm{gmol} / \mathrm{Ls}(\mathrm{atm})^{2}$ (from reference 2, p. 813).
a. Assuming that NO is the only reactant, use the units of the rate constant to determine the order of this reaction in terms of NO.
b. If a reactor is designed to reduce NO at a rate of $0.056 \mathrm{gmol} / \mathrm{min} \mathrm{L}$ at 1620 K , what partial pressure of NO is needed in the reactor?

Introduction to Chemical Engineering

Homework problems

Homework problem 5.

For the acid-neutralization process, we calculated the reactor size required for a reaction temperature of $25^{\circ} \mathrm{C}$. Estimate the reactor volume for a reaction temperature of $5^{\circ} \mathrm{C}$ (a cold winder day) using the following values:

$$
\begin{aligned}
& k_{0}=5.2 \times 10^{13} \mathrm{~L} / \mathrm{gmol} \mathrm{~s} \\
& E_{a}=3500 \mathrm{cal} / \mathrm{gmol}
\end{aligned}
$$

Introduction to Chemical Engineering

Homework problems

Homework problem 6.

As an engineer in a production facility, your assignment is to specify the size of a reactor needed to react a liquid stream (33 L / min) containing species G (concentration $=0.19 M$). The goal is to produce a reactor outlet stream with a concentration of G equal to 0.04 M . To accomplish that, a second stream containing species J (concentration $=1.3 \mathrm{M}$) is also to enter the reactor but at 75% of the volumetric flow rate of the first stream, as shown.

$$
\dot{V}=33 \mathrm{~L} / \mathrm{min}, c_{G}=0.19 \mathrm{M} \longrightarrow \quad \text { Volume }=\text { ? }
$$

The irreversible reaction is

$$
G+J \rightarrow P
$$

Where the reaction rate only depends on species G according to the following kinetic relation:

$$
r_{\text {reaction }, G}=\left(1.8 \frac{L}{\text { gmol min }}\right) c_{G}^{2}
$$

Given these requirements, what size reactor (L) is needed to produce these results? (Assume equal densities for all streams.)

