Chapter 09

Reaction Engineering (*What Size Reactor?*)

- ➤ A chemical reaction is a process that leads to the transformation of one set of chemical substances to another (reactant → product).
- Basic reaction types

9.1 Describing reaction rates

Kinetics vs. Thermodynamics

- Questions about kinetics
 - Question 1: What physical variables affect the rate of a reaction between two chemical species?
 - Question 2: How do we describe the rate of reaction?

- What physical variables affect the rate of a reaction between two chemical species?
 - Answer 1: Frequency of molecular collision (concentration, phase, temperature, pressure...)

9.1 Describing reaction rates

٠

What physical variables affect the rate of a reaction between two chemical species?

9.1 Describing reaction rates

- > What physical variables affect the rate of a reaction between two chemical species?
 - Answer 2: Orientation and force of the collision

Activated complex

Unstable compound

- > What physical variables affect the rate of a reaction between two chemical species?
 - Answer 3: Energy requirements of the reaction
 - Activation energy (E_a)

- What physical variables affect the rate of a reaction between two chemical species?
 - Answer 3: Energy requirements of the reaction

9.1 Describing reaction rates

- > What physical variables affect the rate of a reaction between two chemical species?
 - Answer 3: Energy requirements of the reaction

Catalyst

- ① One of the reactants approaches the catalyst's surface and settles onto an active site ADSORPTION
- ② Another reactant approaches the catalyst
- ③ Re-arrangement of electrons takes place REACTION
- ④ The products are released from the surface DESORPTION

9.1 Describing reaction rates

- > What physical variables affect the rate of a reaction between two chemical species?
 - Answer 3: Energy requirements of the reaction

Irreversible reaction

9.1 Describing reaction rates

How do we describe the rate of reaction?

1. For irreversible reaction $A + B \rightarrow C + D$

For liquid phase

reaction rate
$$\left(\text{in units of } \frac{\text{moles of } A}{\text{time volume}} \right) = r_{\text{reaction},A} = k_r c_A^n c_B^m$$

Reaction order

$$n^{th}$$
 for species A
 m^{th} for species B
 $(n+m)^{th}$ for overall

For gas phase

reaction rate
$$\left(\text{in units of } \frac{\text{moles of } A}{\text{time volume}} \right) = r_{\text{reaction},A} = k_r p_A^n p_B^m$$

Reaction rate constant

$$\begin{aligned} k_r &= k_0 e^{-Ea/RT} \\ k_0 &= frequency \ factor \ (with \ the \ same \ units \ as \ k_r) \\ E_a &= activation \ energy \ (energy \ / \ mole) \\ R &= universal \ gas \ constant \\ T &= reaction \ temperature \ (absolute) \end{aligned}$$

9.1 Describing reaction rates

How do we describe the rate of reaction?

Elementary reactions

: the order of reaction with respect to each of the reactants matches the stoichiometry of the reaction equation.

$$2NO + O_2 \rightarrow 2NO_2 \qquad \qquad r_{reaction,NO} = k_r c_{NO}^2 c_{O_2}$$

Other reactions (in many cases)

: the order of reaction in the reaction rate equation do **not** match the stoichiometry of the reaction.

$$CO + \frac{1}{2}O_2 \to CO_2$$
 $r_{reaction,CO} = k_r c_{CO} c_{H_2O}^{0.5} c_{O_2}^{0.25}$

9.1 Describing reaction rates

How do we describe the rate of reaction?

For the acid-neutralization reaction,

$$HCl + NaOH \rightarrow H_2O + NaCl$$
 $r_{reaction,HCl} = k_r c_{HCl} c_{NaOH}$

Example 9.1

Ethylene glycol, a common antifreeze, is made from the reaction of ethylene chlorohydrin and sodium bicarbonate as shown below:

 $\begin{array}{c} CH_2OH \\ I \\ CH_2Cl \\ ethylene \\ chlorohydrin \\ bicarbonate \\ \end{array} \rightarrow \begin{array}{c} CH_2OH \\ I \\ CH_2OH \\ ethylene \\ glycol \\ \end{array} + NaCl + CO_2$

The reaction is essentially irreversible and is first-order in each reactant, and the reaction rate constant at $82^{\circ}C$ is 5.2 *L/gmol hr* (from reference 1, p. 123).

A reaction mixture at $82^{\circ}C$ with a volume of 17.5 *liters* contains ethylene chlorohydrin and sodium bicarbonate, both at concentrations of 0.5 *M*. What is the reaction rate of ethylene glycol (in *gmol/hr*)?

9.1 Describing reaction rates

How do we describe the rate of reaction?

2. For reversible reaction $A + B \leftrightarrow C + D$

For liquid phase

 $r_{reaction,A} = k_r c_A^n c_B^m - k_r' c_C^r c_D^s$

For gas phase

$$r_{reaction,A} = k_r p_A^n p_B^m - k_r' p_C^r p_D^s$$

9.1 Describing reaction rates

How do we describe the rate of reaction?

Desirability

$A + B \rightarrow C + D$	Desired reaction
$A + B \rightarrow E + F$	Undesired reaction (side reaction)

Idealized types of reactors

9.2 Designing the reactor

- > Irreversible reaction
- Continuously stirred tank reactor (CSTR)

9.2 Designing the reactor

Steps for finding reactor volume

- 1. Perform the material balance analysis for multiple species.
- 2. Compute the reactor volume.

Example 9.2

Species A in liquid solution (concentration = 0.74 M) enters a CSTR at 18.3 L/s, where it is consumed by the irreversible reaction

$$A \rightarrow C$$
 where $r_{reaction,A} = k_r c_A$ $(k_r = 0.015 / s \text{ and } c_A \text{ is in units of } gmol / L)$

What reactor volume is needed so that the concentration of species A leaving the reactor equals 0.09 M? The density can be assumed to be constant.

9.2 Designing the reactor

Example 9.3

In the design of a process, liquid streams of pure species A and B will enter a CSTR, where they will be consumed by the irreversible reaction:

 $2A + B \rightarrow C$ where $r_{reaction,A} = k_r c_A c_B$ $(k_r = 24.7 ft^3 / lbmol hr and c_A and c_B are in units of lbmol / ft^3)$

The molar flow rates of the inlet streams will be

Species $A: \dot{n}_A = 110 \ lbmol / hr$ $MW = 59 \ lb_m / lbmol$ Species $B: \dot{n}_B = 68 \ lbmol / hr$ $MW = 133 \ lb_m / lbmol$

In the reactor, 90% of species A is to be reacted (i.e., 90% conversion of species A is desired), and the output stream will have a density of 50.5 lb_m/ft^3 . What volume must the reactor have?

9.2 Designing the reactor

> Neutralization of HCl

Given information

$$\begin{split} c_{HCl_{in}} &= 0.014 \; gmol \, / \, L \qquad \dot{V}_{HCl_{in}} = 11,600 \; L \, / \, hr \\ c_{NaOH_{in}} &= 0.0254 \; gmol \, / \, L \qquad \dot{V}_{NaOH_{in}} = 6,500 \; L \, / \, hr \end{split}$$

Reaction

$$HCl + NaOH \rightarrow H_2O + NaCl$$

Reaction rate constant

 $r_{reaction,HCl} = k_r c_{HCl} c_{NaOH}$ in units of moles of HCl or NaOH / (volume time)

Reaction rate constant at 25 °C

 $k_{r,HCl} = 1.4 \times 10^{11} L / gmol s$

Allowed HCl concentration at final state by law (pH = 6.5)

$$c_{HCl} = 10^{-6.5} = 3.16 \times 10^{-7} M$$

9.2 Designing the reactor

Neutralization of HCl

Working diagram

- Mole balance on HCI: $c_{HCl_{in}}\dot{V}_{HCl_{in}} = c_{HCl_{out}}\dot{V}_{HCl_{out}} + r_{consumption, HCl}$
- Mole balance on NaOH: $c_{NaOH_{in}}\dot{V}_{NaOH_{in}} = c_{NaOH_{out}}\dot{V}_{NaOH_{out}} + r_{consumption,NaOH}$
- Total mass balance (with constant ρ): $\dot{V}_{HCl_{in}} + \dot{V}_{NaOH_{in}} = \dot{V}_{out}$
- Additional relationships

Stoichiometry:
$$\frac{r_{consumption,HCl}}{r_{consumption,NaOH}} = \frac{1}{1} = 1$$

Molar flow rate balance: $c_{NaOH_{in}}\dot{V}_{NaOH_{in}} = c_{HCl_{in}}\dot{V}_{HCl_{in}}$

9.2 Designing the reactor

> Neutralization of HCl

Process flow diagram (PFD)

Flows kg/h				
Line no. Stream Component	l Acid feed	2 Base feed	3 Mixer outlet	ABC Chemical Co.
HC1	6	_	-	Acid neutralization
NaOH	-	6	-	1x10 ⁸ L/yr
H ₂ O	11594	6490	18096	Sheet no. 1
Total 110	11600	6496	18096	Dwg by Date
				Checked 1 Sep.2010

Homework problems

Homework problem 4.

A prevalent form of toxic pollutant NO_x formed in power plant combustors is NO. Under favorable conditions, NO can be decomposed ("*reduced*") via the following reaction:

 $2NO \rightarrow N_2 + O_2$

At 1620 K, for a reaction rate expressed in gmol/L s and the amount of NO expressed in atmospheres, the reaction rate constant for this irreversible reaction is 0.0108 gmol/L s (atm)² (from reference 2, p. 813).

- a. Assuming that NO is the only reactant, use the units of the rate constant to determine the order of this reaction in terms of NO.
- b. If a reactor is designed to reduce NO at a rate of 0.056 *gmol/min L* at 1620 *K*, what partial pressure of NO is needed in the reactor?

Homework problems

Homework problem 5.

For the acid-neutralization process, we calculated the reactor size required for a reaction temperature of $25^{\circ}C$. Estimate the reactor volume for a reaction temperature of $5^{\circ}C$ (a cold winder day) using the following values:

 $k_0 = 5.2 \times 10^{13} L / gmol s$ $E_a = 3500 cal / gmol$

Homework problems

Homework problem 6.

As an engineer in a production facility, your assignment is to specify the size of a reactor needed to react a liquid stream (33 L/min) containing species G (concentration = 0.19 M). The goal is to produce a reactor outlet stream with a concentration of G equal to 0.04 M. To accomplish that, a second stream containing species J (concentration = 1.3 M) is also to enter the reactor but at 75% of the volumetric flow rate of the first stream, as shown.

$$\dot{V} = 33 L/min, c_G = 0.19 M$$

 $c_J = 1.3 M$
Volume = ?
 $c_G = 0.04 M$

The irreversible reaction is

$$G + J \rightarrow P$$

Where the reaction rate only depends on species G according to the following kinetic relation:

$$r_{reaction,G} = \left(1.8 \frac{L}{gmol\ min}\right) c_G^2$$

Given these requirements, what size reactor (L) is needed to produce these results? (Assume equal densities for all streams.)