Lecture 02: Introduction to Nanotechnology

Lecture 02: table of contents

- What is nanotechnology?
- History of nanotechnology
- Nanomaterial fabrication and processing
- Nanomaterial characterizations
- Nanomaterial applications

What is nanotechnology?

What is nano?

- Origin

The word "nano" is originated from and the Greek "nanos" which means "dwarf" (i.e. an abnormally short person).

- Definition

- 1. Denoting 10^{-9} or one billionth (i.e. $1 \text{ nm} = 10^{-9} \text{ m}$)
- 2. Indicating extreme smallness

How small is nanoscale?

- Absolute value -

- Relative value -

1 Earth

~ 10⁹ Golf balls

What is nanotechnology?

- In general, nanotechnology can be understood as a technology of design, fabrication and applications of nanostructures and nanomaterials.

What is nanotechnology?

- Nanotechnology is an interdisciplinary which needs physics, chemistry, engineering, biology and etc..

What happens in nanometer scale?

- Materials in **micro**meter scale mostly exhibit physical properties the same as that of bulk.
- Materials in **nano**meter scale may exhibit physical properties the different from that of bulk.

Why the nanomaterial's property is changed?

- Nanomaterials have a relatively larger surface area or surface area to volume ratio when compared to the same mass of material produced in a bulk form.

What happens when surface/volume ratio increase?

- Increase of surface/volume ratio generates the unsatisfied valence (broken bond) at the surface atoms, indicating the increase of surface energy.

Surface energy: $\gamma = 0.5 N_b \varepsilon \rho_a$ (without surface relaxation)

 N_b : number of broken bond ε : bond strength ρ_a : number density of atoms at surface

History of nanotechnology

History

"Lycurgus" Cup (Rome, 4th Century)

Colloidal gold and silver in the glass allow it to look different color depending on light position.

Light outside

Light inside

History

Window from Chartres Cathedral (France, 13th Century)

Various metal oxide with different size were used in the glass allowing it to look different color.

History

Colloidal gold dispersion: firstly intended synthesis

Michael Faraday (1791 ~ 1867)

Royal medal winner (1846)

Lecture entitled as "Experimental relations of gold to light"

- Royal Society in London (1857)

Faraday's colloidal ruby gold (1857) : Stable until 1945

Electron micrograph (1985) : 2 ~ 6 nm

Bulk gold

History

Inspiration for nanotechnology

Richard P. Feynman (1918 ~ 1988)

Nobel prize winner in physics (1965)

Lecture entitled as "There is plenty of room at the bottom"
- American Physical Society in California (1959)

"What I want to talk about is the problem of manipulating and controlling things on a small scale."

History

Electron microscope

Ernst Ruska (1906 ~ 1988)

Nobel prize winner in physics (1986)

Paper entitled as "The magnetic concentrating coil for fast electron beam" - Z. Tech. Phys., 12 (1931) 389-448.

Electron microscope (1933)

Electron microscope (present)

History

Scanning tunneling microscope (STM)

Gerd Binnig (1947 ~) Heinrich Rohrer (1933 ~ 2013)

Nobel prize winner in physics (1986)

Paper entitled as "Surface studies by scanning tunneling microscopy" - *Phys. Rev. Lett.*, 49 (1982) 57-61.

STM image of Au (110) surface (1982)

STM image of Au (110) surface (2014)

Nanomaterial Fabrication and Processing

Classification of nanomaterials

Dimensional classification

Classification of nanomaterials

Zero-dimensional (0-D) structures

- Nanoparticles -

- Quantum dots -

- Fullerenes -

Classification of nanomaterials

One-dimensional (1-D) structures

- Nanorods -

- Nanowires -

- Nanotubes -

Classification of nanomaterials

Two-dimensional (2-D) structures

- Nanobelts -

- Graphene -

- Thin film -

Classification of nanomaterials

Three-dimensional (3-D) structures

- Dendrite -

- Nanostructured thin film -

- Nanopattering -

Fabrication strategy

Atom

Two main approaches to fabricate nanomaterials Bulk **Powder Nanomaterials Bottom-up approach** : small to large **Top-down approach** : large to small Cluster Molecule

Fabrication strategy 1: bottom-up approach

Bottom-up approach

- Bottom-up approach refers to the construction of nanomaterial from the bottom, i.e. atom-by-atom, molecule-by-molecule or cluster-by-cluster.
- The atoms or molecules are used as the building blocks to produce nanoparticles, nanotubes, nanorods, thin films or layered structures.
- An advantage of the bottom-up approach is the better possibilities to obtain nanostructures with less defects and more homogeneous chemical compositions.
- For most materials, there is no difference in physical properties of nanomaterials compared with that of bulk.

Example: synthesis of nanoparticles and their growth

Fabrication strategy 2: top-down approach

Top-down approach

- The word "top-down" means starting from large pieces of material and producing the intended structure by mechanical or chemical methods.
- Cutting, grinding and etching are typical fabrication techniques, which have been developed to work on the nano scale.
- Top-down approach has proven unsuccessful with the problems originated from the defect of surface structure and incorporation of impurity.
- Even though there are problems connected to using a top-down approach, this is the method of choice when highly complex structures are made.

Example: ball milling of FeCo powder

Fabrication methods

Nanomaterial fabrication methods

Physical methods

Ball milling

Inert gas condensation

Arc discharge

Ion sputtering

Laser ablation

Spray pyrolysis

Flame pyrolysis

Thermal evaporation

Pulsed laser deposition

Molecular beam epitaxy

Chemical methods

Chemical reduction synthesis

Solvothermal synthesis

Photochemical synthesis

Electrochemical synthesis

Sonochemical synthesis

Micelles and microemulsions

Chemical vapor deposition

Sol-gel process

Lithographic techniques

Photolithography

Electron-beam lithography

Focused ion beam lithography

Nanoimprint lithography

Fabrication methods 1: physical methods

Ion sputtering: direct current (DC) sputtering

- Argon is ionized by a strong potential difference, and these ions are accelerated to a target. After impact, target atoms are released and travel to the substrate, where they form layers of atoms in the thin film.

Fabrication methods 2: chemical methods

Electrochemical synthesis: electrodeposition

- Metal ions in solution can be electrochemically reduced by negative applied potential on the surface of substrate (working electrode).

Fabrication methods 3: lithographic techniques

Photolithography

- Patterning on silicon wafer can be fabricated by using a mask with exposure of UV light .

Nanostructure processing 1: shape control

Crystal orientation

Nanostructure processing 1: shape control

Crystal orientation

Nanostructure processing 2: core-shell

Core-shell synthesis

Methods for Pt bimetallic core-shell synthesis

- (a) Electrochemical dealloying
- (b) Electrochemical leaching
- (c) Adsorbate-induced segregation
- (d) Thermal induced segregation
- (e) Heterogeneous colloidal nucleation
- (f) Underpotential deposition displacement

Nanostructure processing 2: core-shell

Core-shell synthesis (Pt-Pd core-shell)

Nanomaterial Characterization

Characterization methods

Nanomaterial characterization methods

Structural characterization

X-ray diffraction

Small angle X-ray scattering

Electron microscope

Scanning electron microscope

Transmission electron microscope

Scanning probe microscope

Scanning tunneling microscope

Atomic force microscope

Gas physical and chemical adsorption

Chemical characterization

Optical spectroscopy

UV-visible spectroscopy

FT-IR spectroscopy

Raman spectroscopy

Electron spectroscopy

Energy dispersive spectroscopy

Electron probe micro analyser

Electron energy loss spectroscopy

Auger electron spectroscopy

X-ray photoelectron spectroscopy

Characterization methods

Resolution of microscope

Characterization methods

When the incident electron beam meet specimen...

Characterization methods 1: structural characterization

Scanning electron microscope (SEM)

Characterization methods 2: chemical characterization

Energy dispersive spectroscopy (EDS)

Nanomaterial Application

Applications

Bio

Optic

Application 1: energy

Fuel cell

Application 2: bio

Biological imaging

Application 3: electronics

Cu interconnection

Integrated circuit (IC)

Cu interconnection

Cu interconnection (cross-section)

Application 4: optics

Quantum dot display

