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How to prepare the reports and presentation?

Your reports and presentation should include…

1. Necessity of project

2. Motivation and purpose of project

3. Conventional research and technology

4. Problem solving plan and process

5. Concept and detail design

5.1. Goal setting method of design

5.2. Limited factors

5.3. Synthesis

5.4. Analysis

5.5. Evaluation

6. Expected effect

7. Improvement direction

• Proposal report (team)

• Final report (team)

• Individual presentation

• Team presentation
Changeable

All reports and presentation materials should be prepared by English.
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How to prepare the reports and presentation?

Development of clean energy for future (case study)
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1. Necessity of project
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1. Necessity of project

Energy issues: environmental problem

Global warmingGreenhouse effect
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1. Necessity of project

World electricity generation

Source: http://www.eia.gov/forecasts/

Energy issues: dependence
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1. Necessity of project

Steam engine (1769)

Industrial revolution (1760 ~ 1830)

Motorwagen (1885)

Combustion engine (1807)

Power station (1882)

Energy issues: dependence (historical time line)
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1. Necessity of project

Energy reserves distribution

Energy depletion

Resources war

Energy issues: international conflict
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1. Necessity of project

Energy issues: conversion efficiency

Ideal heat engine

1. No friction

2. ΔS = Q/T = 0

3. Reversible

Power plant
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Efficiency at TH = 673 K (400 °C) and TL = 298 K (25 °C) 
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1st law: conservation of energy
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1. Necessity of project

Energy issues: energy consumption

World electricity consumption by regionElectricity consumption (billion – kWh)
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1. Necessity of project

Solutions for energy issues: environmental problem (carbon cycle)

CO2 conversion (utilization)Carbon capture and storage

Photochemical

Biochemical

Electrochemical
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1. Necessity of project

Solutions for energy issues: international conflict (advanced technology)

Shale gas Prediction of gas production portion

Chemical composition of shale gas is very similar with that of conventional gas.

Production of shale gas will be hugely increased.
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1. Necessity of project

Solutions for energy issues: conversion efficiency (development of new type power plant)

Ultra-supercritical power plant Combined cycle power plant

Ultra-supercritical and combined cycle power plants are expected to increase the efficiency compared 

with conventional power plant.
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2. Motivation and purpose of project
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2. Motivation and purpose of project

Hydrogen as a future energy
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2. Motivation and purpose of project

How to produce and utilize hydrogen?
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2. Motivation and purpose of project

How to produce and utilize hydrogen?

Water electrolysis Fuel cell

H2 tank

×
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2. Motivation and purpose of project

Hydrogen as an energy storage

Water electrolysis Fuel cellH2 tank

×

×

Battery
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2. Motivation and purpose of project

Current status of environmental-friendly energy system
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3. Conventional research and technology
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3. Conventional research and technology

Renewable energy

Fossil fuels

Power plant

Reforming Fuel cell

High efficiency (~ 85%)

Low price (~ 0.75 $/kg)

CO2 emission

Water electrolysis Fuel cell

CO2 zero-emission

Low efficiency (~ 40 %)

High price (~ 2.56 $/kg)

Electricity generation methods
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3. Conventional research and technology

Hydrogen production methods

CH3OHCH4

Hydrocarbons 

& Alcohols

Coal 

& Biomass

H2O

Water

CH4 + 2H2O → 4H2 + CO2

CH3OH + H2O → 3H2 + CO2

H2O

H2O H2OCO

Bio-oil + H2O → CO + H2

Coal (C) + H2O → H2 + CO

CO + H2O → CO2 + H2

2H2O → 2H2 + O2



23

Chemical Engineering Fundamentals and Design

3. Conventional research and technology

Hydrogen production methods: water electrolysis

2H2O → 2H2 + O2
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3. Conventional research and technology

Hydrogen production methods: water electrolysis
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3. Conventional research and technology

Hydrogen production methods: proton exchange membrane water electrolysis (PEMWE)
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3. Conventional research and technology

Hydrogen utilization methods: fuel cell

Sir William Grove (1811 ~ 1896)
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3. Conventional research and technology

Hydrogen utilization methods: proton exchange membrane fuel cell (PEMFC)

Anode reaction: 

2H2 → 4H+ + 4e-

Cathode reaction: 

O2 + 4H+ + 4e- → 2H2OOverall reaction: 

2H2 + O2 → 2H2O
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3. Conventional research and technology

Hydrogen production methods: economical problem of water electrolysis

H2 production 

technique

Energy 

efficiency

Estimated 

price
Reaction Major advantages

Steam 

reforming of 

methane

85% $0.75/kg

CH4 + H2O → 2H2 + CO

2CO → CO2 + C

CO + H2O → CO2 + H2

High efficiency

Economically favorable

Methane pipelines already in place

Coal 

gasification
63% $0.92/kg

Coal (C) + H2O → H2 + CO + I

CO + H2O → CO2 + H2

Economically favorable

Abundance of coal resources in U.S.

Biomass 

pyrolysis
56% $1.26~2.19/kg

Biomass + Energy → Bio-oil + Char + I

Bio-oil + H2O → CO + H2

CO + H2O → CO2 + H2

Renewable

Not dependent on fossil fuels

Water 

electrolysis
40~60% $2.56~2.97/kg H2O → 0.5O2 + H2

Emissions free when paired with 

a renewable energy sources
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3. Conventional research and technology

Hydrogen utilization methods: economical problem of fuel cell

Fuel cell vehicle: ~ 70,000 $ Gasoline vehicle: ~ 30,000 $

2017: $47/kW
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3. Conventional research and technology

What is main cause of economical problem?

Breakdown of cost by PEMFC components
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3. Conventional research and technology

Fuel cell car Fuel cell engine (stack) Single fuel cell

Membrane electrode assemblyPt/C catalystsSingle Pt nanoparticle

Cost problem for hydrogen production and utilization methods
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3. Conventional research and technology

Cost problem for hydrogen production and utilization methods

Water electrolyzer Fuel cell
36.3 $/g 38.0 $/g

18.6 $/g

25.1 $/g
0.5 $/g

36.0 $/g
1.6 $/g
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3. Conventional research and technology

Catalysts for water electrolysis and fuel cell

Fuel cell reactionsWater electrolysis reactions

In acid

Cathode: 4H+ + 4e- → 2H2

In alkaline

Cathode: 4H2O + 4e- → 2H2 + 4OH-

Anode: 4OH- → O2 + 2H2O + 4e-

Anode: 2H2O → O2 + 4H+ + 4e- Anode: 2H2 → 4H+ + 4e-

Anode: 2H2 + 4OH- → 4H2O + 4e-

In acid

In alkaline

Cathode: O2 + 4H+ + 4e- → 2H2O

Cathode: O2 + 2H2O + 4e- → 4OH-
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Catalyzed reaction

2 20.5H O

2H O

2 2 20.5H O H O 

Reaction progress

E
n

er
g
y

Fuel cell

G

Reactant

Product

/
, aE RT

reatantr kC k Ae


 
aE

/E Ta RAek 

For non-catalyzed reaction

r

aE For catalyzed reaction

/E Ta RAek 

Fuel cell reactions

3. Conventional research and technology
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Pt/C catalyst

3. Conventional research and technology

Pt NP

Carbon

At least 70 g of Pt should be loaded to fuel cell engine to operate vehicle (~ KRW 10,000,000).
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4. Problem solving plan and process
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4. Problem solving plan and process

Strategies to increase activity and decrease cost of Pt catalyst

Shape control: increase activity

Pt

36.3 $/g

Shell (Pt)

Lower priceCore-shell structure: decrease cost

vs.

Core (cheap metal)Pt



38

Chemical Engineering Fundamentals and Design

4. Problem solving plan and process

Advantages of core-shell catalyst

Active surface area

6.0 cm2

Bulk Pt

1 cm

1 cm

1 cm

····

Monolayer Pt Active surface area

~ 4.4 ×107 cm2

[Nat. Mater., 5 (2006) 909-913.] [Nat. Mater., 6 (2007) 241-247.]
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4. Problem solving plan and process

Physical methods Chemical methods Lithographic techniques

Ball milling Chemical reduction synthesis Photolithography

Inert gas condensation

Arc discharge

Ion sputtering

Laser ablation

Spray pyrolysis

Flame pyrolysis

Thermal evaporation

Solvothermal synthesis

Photochemical synthesis

Electrochemical synthesis

Sonochemical synthesis

Micelles and microemulsions

Chemical vapor deposition

Sol-gel process

Electron-beam lithography

Focused ion beam lithography

Nanoimprint lithography

Pulsed laser deposition

Molecular beam epitaxy

Fabrication methods for core-shell catalyst
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4. Problem solving plan and process

Advantages and disadvantages of current technologies
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5. Concept and detail design
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5.1. Goal setting method of design

Fabrication process of Pt core-shell catalyst

ML: monolayer

UPD: under potential deposition

Segregation at 

elevated temperature
ML by UPD Displaced by Pt

Pt
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Application of Pt core-shell catalyst to fuel cell engine

5.1. Goal setting method of design
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Application of Pt core-shell catalyst to fuel cell engine

Fuel cell vehicle ~ 70,000 $

5.1. Goal setting method of design
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Cost of Pt core-shell catalyst

5.2. Limited factors

Fuel cell vehicle: 

~ 70,000 $

New fuel cell catalyst: 

< 2,500 $

New fuel cell engine: 

< 12,000 $

New fuel cell vehicle: 

< 64,000 $

Fuel cell engine: 

~ 18,000 $

Fuel cell catalyst: 

~ 8,500 $ (Pt: ~ 70 g)
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Material selection: feasibility for fabrication process

5.2. Limited factors

Metal A: cheap and earth-abundant metals (e.g. Ni, Co, Cu, Sn and etc.)

Metal B: more stable than metal A 

Segregation at 

elevated temperature
ML by UPD Displaced by Pt

Pt

Metal C: less stable than metal B and Pt 
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Material selection: cost

5.2. Limited factors

Metal A: cheap and earth-abundant metals (e.g. Ni, Co, Cu, Sn and etc.)

London Metal Exchange (http://www.lme.com)

Metal prices

• Ni: 0.011 $/g

• Co: 0.048 $/g

• Cu: 0.006 $/g

• Sn: 0.020 $/g

• Pt: 36.3 $/g

Ex) Ni
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5.2. Limited factors

Material selection: safety

Metal A: cheap and earth-abundant metals (e.g. Ni, Co, Cu, Sn and etc.)

CoNi

Cu Sn

Cd

As
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Material selection: feasibility for surface segregation

5.2. Limited factors

Metal B: more stable than metal A 

Standard reduction potential table

Stable

Fe3+ (aq) + 3e- → Fe (s)

Cu2+ (aq) + 2e- → Cu (s)

Sn2+ (aq) + 2e- → Sn (s)

Ni2+ (aq) + 2e- → Ni (s)

Co2+ (aq) + 2e- → Co (s)

+0.77 V

+0.34 V

-0.14 V

-0.25 V

-0.28 V

Au3+ (aq) + e- → Au (s)

Pt2+ (aq) + 2e- → Pt (s)

Ir3+ (aq) + 3e- → Ir (s)

Pd2+ (aq) + 2e- → Pd (s)

Ag+ (aq) + e- → Ag (s)

+1.50 V

+1.19 V

+1.16 V

+0.92 V

+0.80 V
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Material selection: cost

5.2. Limited factors

Metal B: more stable than metal A 

Au3+ (aq) + e- → Au (s)

Pt2+ (aq) + 2e- → Pt (s)

Ir3+ (aq) + 3e- → Ir (s)

Pd2+ (aq) + 2e- → Pd (s)

Ag+ (aq) + e- → Ag (s)

+1.50 V

+1.19 V

+1.16 V

+0.92 V

+0.80 V
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Material selection: feasibility for Pt displacement

5.2. Limited factors

Metal C: less stable than metal B and Pt 

Standard reduction potential table

Stable

Fe3+ (aq) + 3e- → Fe (s)

Cu2+ (aq) + 2e- → Cu (s)

Sn2+ (aq) + 2e- → Sn (s)

Ni2+ (aq) + 2e- → Ni (s)

Co2+ (aq) + 2e- → Co (s)

+0.77 V

+0.34 V

-0.14 V

-0.25 V

-0.28 V

Au3+ (aq) + e- → Au (s)

Pt2+ (aq) + 2e- → Pt (s)

Ir3+ (aq) + 3e- → Ir (s)

Pd2+ (aq) + 2e- → Pd (s)

Ag+ (aq) + e- → Ag (s)

+1.50 V

+1.19 V

+1.16 V

+0.92 V

+0.80 V



52

Chemical Engineering Fundamentals and Design

5.3. Synthesis: nanoparticle

1 , , j

c

i

i i T P n

G
dG SdT VdP dn

n

 
     

 


0

ln ln 0v

m m

kT C kT
G

V C V


 
      

 

Raoult’s law Henry’s law

Activity Chemical potential

0

i i iP P X
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i

i
i

x
i

dP
P

dX

 
 

 

i ia X
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G: Gibbs free energy

S: Entropy

T: Temperature

V: Volume

P: Pressure

ni: concentration for i species 

Gv: Volumetric Gibbs free energy

k: Boltzmann constant

Vm: Molar volume of bulk crystal

C: Solute concentration

C0: Equillibrium concentration

σ: Supersaturation

0

C

C
 

Gibbs free energy for 

mixed solution or mixed gas

Volumetric Gibbs 

free energy change

Thermodynamic approaches
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5.3. Synthesis: nanoparticle

3 24
4

3
vG r G r     

Supersaturated solution Nanoparticles

r

Assumption

: produced nanoparticle is sphere.

3 24
4

3
vrG rG    3 24

4

3
vrG rG    

Volume energy

(minus)

Surface energy

(plus)

Surface energy 

increase

Thermodynamic approaches
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5.3. Synthesis: nanoparticle

r

24G r  

Surface energy

34

3
vG r G  

Volume energy

3 24
4

3
vG r G r     

Volume energy + Surface energy
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Critical radius of nucleation r* is…

Thermodynamic approaches
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5.3. Synthesis: nanoparticle

r

3 24
4

3
vG r G r     

Volume energy + Surface energy

G

+

̶̶̶̶̶̶̶̶̶

*r

*G

Reversible

(nucleation)

Irreversible

(growth)

*2r

Supersaturated

solution

*r r *r r

Nonspontaneous

Spontaneous

Volume energy = Surface energy
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5.3. Synthesis: nanoparticle

Thermodynamic approaches
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5.3. Synthesis: annealing

Thermodynamic approaches: surface energy difference
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5.4. Analysis

Metal A: cheap and earth-abundant metals

Metal B: more stable than metal A

Metal C: less stable than metal B and Pt 

Ir3+ (aq) + 3e- → Ir (s) +1.16 V

Ni2+ (aq) + 2e- → Ni (s) -0.25 V Cu2+ (aq) + 2e- → Cu (s) +0.34 V

Ir3+ (aq) + 3e- → Ir (s) +1.16 V

Elemental analysis
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5.4. Analysis

Pt

Two theta

Crystal structure and electrochemical measurement
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5.5. Evaluation

Pt: 0.2 A/mg

PtmlIrNi: 1.4 A/mg

Pt mass based activity
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6. Expected effect
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Price reduction of fuel cell vehicle

6. Expected effect

New fuel cell engine: 

~ 10,700 $

New fuel cell vehicle: 

~ 62,700 $

New fuel cell catalyst: 

~ 1,200 $ (Pt: ~ 10 g)

Fuel cell vehicle: 

~ 70,000 $

Fuel cell engine: 

~ 18,000 $

Fuel cell catalyst: 

~ 8,500 $ (Pt: ~ 70 g)
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Relieving environmental problem

6. Expected effect

Fuel cell vehicleGasoline vehicle

CO2, NOx, SOx H2O
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Fuel conservation

6. Expected effect

Fuel cell vehicle

If just 20% of the cars in America used 

fuel cells (50,000,000), 

We could cut oil imports by 1.5 million barrels per day 

(= $44 billion per year).
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7. Improvement direction

New core-shell catalyst Shape-controlled catalyst

Non-metal catalyst Mechanism analysis
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How to prepare the reports and presentation?

Your reports and presentation should include…

1. Necessity of project

2. Motivation and purpose of project

3. Conventional research and technology

4. Problem solving plan and process

5. Concept and detail design

5.1. Goal setting method of design

5.2. Limited factors

5.3. Synthesis

5.4. Analysis

5.5. Evaluation

6. Expected effect

7. Improvement direction

• Proposal report (team)

• Final report (team)

• Individual presentation

• Team presentation
Changeable

All reports and presentation materials should be prepared by English.


