Lecture 09: Nanomaterials Characterization II

Lecture 09: table of contents

- 1 Introduction to electron spectroscopy
- 2 X-ray photoelectron spectroscopy

Introduction to Electron Spectroscopy

Characterization methods

Nanomaterial characterization methods

Structural characterization

X-ray diffraction

Small angle X-ray scattering

Electron microscope

Scanning electron microscope

Transmission electron microscope

Scanning probe microscope

Scanning tunneling microscope

Atomic force microscope

Gas physical and chemical adsorption

Chemical characterization

Optical spectroscopy

UV-visible spectroscopy

FT-IR spectroscopy

Raman spectroscopy

Electron spectroscopy

Energy dispersive spectroscopy

Electron probe micro analyser

Electron energy loss spectroscopy

Auger electron spectroscopy

X-ray photoelectron spectroscopy

Electron spectroscopy

Classification

Spectroscopy	In/Out	Incident energy	Information
X-ray photoelectron spectroscopy (XPS)	In: X-ray Out: electron	1 ~ 4 keV	Chemical states Composition
UV photoelectron spectroscopy (UPS)	In: UV photon Out: electron	5 ~ 500 eV	Valence band
Auger electron spectroscopy (AES)	In: electron Out: electron	1 ~ 5 keV	Depth profile Composition
Inverse photoelectron spectroscopy (IPS)	In: electron Out: photon	8 ~ 20 eV	Unoccupied states
Electron energy loss spectroscopy (EELS)	In: electron Out: electron	1 ~ 5 eV	Vibrations

Electron spectroscopy

X-ray photoelectron spectroscopy

History of X-ray photoelectron spectroscopy (XPS)

Heinrich Hertz (1857 ~ 1894)

In 1887, Heinrich Hertz discovered photoelectric effect, but could not explain. "Ionization occurs when matter interacts with light of sufficient energy."

Albert Einstein (1879 ~ 1955)

Albert Einstein received the Nobel Prize in Physics (1921) for his "services to theoretical physics", in particular his discovery of the law of the photoelectric effect, a pivotal step in the evolution of quantum theory.

History of X-ray photoelectron spectroscopy (XPS)

Kai Seigbahn (1918 ~ 2007)

Precision Method for Obtaining Absolute Values of Atomic Binding Energies

CARL NORDLING, EVELYN SOKOLOWSKI, AND KAI SIEGBAHN

Department of Physics, University of Uppsala, Uppsala, Sweden

(Received January 10, 1957)

W E have recently developed a precision method of investigating atomic binding energies, which we believe will find application in a variety of problems in atomic and solid state physics. In principle, the method

Fig. 1. Lines resulting from photoelectrons expelled from Cu by Mo $K\alpha_1$ and Mo $K\alpha_2$ x-radiation. The satellites marked D.E.L. are interpreted as due to electrons which have suffered a discrete energy loss when scattered in the source.

Nobel Prize in Physics (1981)

(His father, Manne Siegbahn, won the Nobel Prize in Physics in 1924 for development of X-ray spectroscopy.)

What can we do with XPS?

- 1. What elements are present in the surface region.
- Different elements have different binding energies of the inner (core) levels.
- 2. Often, also the chemical state of the elements can be determined,
- ex) Al-metal can be distinguished from Al-oxide.
- The exact binding energy of a core level depends on the chemical state. Chemical shifts.
- 3. The surface geometry can be qualitatively determined.
- Using diffraction effects and/or the chemical shifts of the binding energies (and imagination)
- 4. The band-structure of the solid can be measured.
- Measuring the emission from the valence band in an angle resolved manner
- 5. Chemically sensitive microscopy is possible.

In other words, chemical composition, geometrical structure and electronic structure can be analyzed by XPS measurement.

Valence shell

Energy levels: conduction and valence band

Conductors (metals)

Number of atoms (N)

N = 1

N = 2

N = 10

 $N = \infty$

Energy levels: conduction and valence band

Semiconductors

Number of atoms (N)

N = 1

N = 2

N = 10

 $N = \infty$

Energy levels: conduction and valence band

Insulators

 σ^* or π^*

=

Conduction band (electron empty)

Valence shell —

.

••••

Large band gap

 σ or π \longrightarrow \bigstar

* * * * * * * *

Valence band (electron filled)

Number of atoms (N)

N = 1

N = 2

N = 10

 $N = \infty$

Energy levels: conduction and valence band

- Conduction band: the lowest-energy empty band
- Valence band: highest-energy filled band (which may be only partially filled)

Energy levels: core level

Energy levels: core level

 $1s^22s^22p^63s^23p^2$

ls ———

3d —

3p —

3s —

2p

2s —

Silicon atom

 \boldsymbol{E}

Small band gap

Valence band Mostly 3s, 3p bonding (electron filled)

Core level
2s, 2p band
(electron filled)

Core level
1s band
(electron filled)

Silicon bulk

Fermi level

Fermi level is the highest energy level of electron in valence band at absolute zero (0 K).

Vacuum level and work function

In solid-state physics, the work function is the minimum thermodynamic work (i.e. energy) needed to remove an electron from a solid to the vacuum level immediately (outside the solid surface).

Period	Element	Work Function by eV Group
2	Boron	~4.5
	Carbon	4.5-5.0
3	Aluminum	4.0-4.5
4	Vanadium	4.0-4.5
	Chromium	4.5-5.0
	Iron	4.0-4.5
	Cobalt	4.0-4.5
	Nickel	~4.5
	Copper	4.0-4.5
	Zinc	4.0-4.5
	Germanium	4.5-5.0
	Arsenic	5.0-5.5
	Selenium	4.5-5.0
5	Molybdenum	4.0-4.5
	Technetium	4.0-4.5
	Ruthenium	4.5-5.0
	Rhodium	4.5-5.0
	Palladium	4.5-5.0
	Silver	4.0-4.5
	Cadmium	4.0-4.5
	Tin	4.0-4.5
	Antimony	4.0-4.5
	Tellurium	4.5-5.0
6	Tantalum	4.0-4.5
	Tungsten	~4.5
	Rhenium	~5.0
	Osmium	4.5-5.0
	Iridium	3.50
	Platinum	5.50
	Gold	4.5-5.0
	Mercury	~4.5
	Lead	~4.0
	Bismuth	4.0-4.5
	Polonium	4.5-5.0

Photoelectric effect

 $1s^22s^22p^63s^23p^2$

Photoelectric effect

Photoelectric effect

Inelastic mean free path (IMFP)

- The inelastic mean free path (IMFP) is an index of how far an electron on average travels through a solid before losing energy.

Photoelectric effect

Inelastic mean free path (IMFP)

$$I_s = I_0 e^{-d/\lambda}$$

 I_s = electron intensity at the surface

 I_0 = electron intensity emitted at a depth d below the surface

d = depth

 λ = inelastic mean free path

- Sampling depth is defined as the depth from which 95 % of all photoelectrons are scattered by the time they reach the surface (3λ) .
- Most λ 's are in the range of 1.0 ~ 3.5 nm for Al K α radiation.
- The sampling depth (3λ) for X-ray photoelectron spectroscopy under these conditions is $3 \sim 10$ nm.

Instrument

Typical X-ray photoelectron spectroscopy (XPS)

- 1. Sources
 - X-ray: aluminum (1486.6 eV) or magnesium (1253.6 eV)
 - Vacuum UV: He(I) (21.2 eV), He(II) (40.8 eV)
- 2. Sample size: centimeter scaled area
- 3. Chamber: ultrahigh vacuum (< 10⁻⁸ Torr or <10⁻¹¹ atm)
- 4. Electron analyzer: kinetic energy measurement
- 5. Detector: electron multiplier

Instrument

X-ray generation

Wilhelm Röntgen (1845 ~ 1923)

Energy and line widths of available anode materials.					
Anode	Radiation	Photon Energy (eV)	Line Width (eV)		
Mg	Κα	1253.6	0.7		
Al	Κα	1486.6	0.85		
Zr	Lα	2042.4	1.6		
Ag	Lα	2984.3	2.6		
Ti	Κα	4510.9	2.0		
Cr	Κα	5417	2.1		

- X-rays can be generated by an X-ray tube, a vacuum tube that uses a high voltage to accelerate the electrons released by a hot cathode to a high velocity.
- The high velocity electrons collide with a metal target (the anode), creating the X-rays.

Instrument

Electron analyser

$$F = qE = \frac{mv^2}{r} = \frac{2KE}{r} = \frac{2e\Delta V}{\left(\frac{1}{r_i} - \frac{1}{r_o}\right)r^2}$$

$$KE = \frac{e\Delta V}{\left(\frac{1}{r_i} - \frac{1}{r_o}\right)r}$$

F =force

q = electron charge

E = electrical fields

m = electron mass

v = electron velocity

r = trajectory radius (*i*: inner, *o*: outer)

V = voltage

A typical XPS spectrum includes...

- 1. Wide scan spectrum provides the information of core level, valence band and auger electrons.
- 2. Sharp peaks due to photoelectrons created within the first few atomic layers (elastic)
 - e. g.) core level spectrum
- 3. Multiplet splitting occurs when the unfilled shells contain unpaired electrons.
- 4. A broad structure due to electrons from deeper in the solid which are inelastically scattered (reduced KE) forms the back ground.
- 5. Auger peaks produced by X-rays
 - e. g.) transitions from L to K shell: O KLL or C KLL

Au XPS spectrum: wide scan

Au XPS spectrum: wide scan

Background: emitted photoelectrons with energy loss

Au XPS spectrum: core level (4f orbitals)

Spin-orbital splitting

XPS:: "soft" x-ray photon energies of 200-2000 eV for analysis of core levels.

Au XPS spectrum: core level

Core level binding energies depending on atomic number

Au UPS spectrum: valence band

Gas	Emission Line	Energy (eV)	Wavelength (nm)
Н	Lyman α	10.20	121.57
	Lyman β	12.09	102.57
He	1 α	21.22	58.43
	1 β	23.09	53.70
	1 γ	23.74	52.22
	2 α	40.81	30.38
	2 β	48.37	25.63
	2 γ	51.02	24.30
Ne	1 α	16.67	74.37
	1 α	16.85	73.62
	1 β	19.69	62.97
	1 β	19.78	62.68
	2 α	26.81	46.24
	2 α	26.91	46.07
	2 β	27.69	44.79
	2 β	27.76	44.66
	2 β	27.78	44.63
	2 β	27.86	44.51
	2 γ	30.45	40.71
	2 γ	30.55	40.58
Ar	1	11.62	106.70
	1	11.83	104.80
	2	13.30	93.22
	2	13.48	91.84

UPS: vacuum UV energies of 10-45 eV for analysis of valence electrons

Au UPS spectrum: valence band

Wavelength

increase in orbital energy

Visible: 400 ~ 750 nm

Ultraviolet (UV): 200 ~ 400 nm Vacuum UV or Far UV: ~ 200 nm

Ground State

$\sigma \rightarrow \sigma^*$ transitions

- 1. An electron in a bonding s orbital is excited to the corresponding antibonding.
- 2. The required energies to these transitions are very large.
- 3. Methane shows an absorbance maximum at 125 nm which is not seen in typical UV-visible spectra.

$n \rightarrow \sigma^*$ transitions

- 1. Saturated compounds containing atoms with lone pairs (nonbonding) are capable for these transitions.
- 2. These transitions usually need less energy than $\sigma \to \sigma^*$ transitions.
- 3. They can be initiated by light whose wavelength is in the range of $150 \sim 250$ nm.

Au UPS spectrum: Fermi edge

Short summary

*electron spectroscopy for chemical analysis (ESCA)

Data processing

Step 1: Binding energy referencing

Step 2: Background subtracting

Step 3: Peak fitting

Step 4: Peak identifying

Data processing step 1

Binding energy referencing (calibration)

Sample/spectrometer energy level diagram (conductor)

Because the Fermi levels of the sample and spectrometer are aligned, we only need to know the spectrometer work function, Φ spec to calculate BE (1s).

Sample/spectrometer energy level diagram (insulator)

A relative build-up of electrons at the spectrometer raises the Fermi level of the spectrometer relative to the sample. A potential $E_{\rm ch}$ (surface charge energy) will develop.

$$BE = hv - KE - \Phi_{\text{spec}} - E_{ch}$$

Data processing step 1

Binding energy referencing (calibration)

Data processing step 2

Back ground subtracting

Peak: photoelectrons without energy loss (elastic)
Background: photoelectrons with energy loss (inelastic)

Data processing step 3

Peak fitting (separation)

Using software: CasaXPS, XPSpeak41...

Data processing step 4

Peak identifying from database

XPS Home
Introduction
Search Menu
Data Field
Definitions
Version History

Search

Version History
Disclaimer
Acknowledgments
Contact Information
FAQs
Rate Our Products

Available photoelectron line(s) for Pt:

Available photoelectron line(s) for Pt:

Click on checkboxe(s) and then click on Search button to retrieve data for desired line(s).

2p3/2 3d3/2 3d5/2 3p1/2 3p3/2 3s 4d 4d3/2 4d5/2 4d5/2 4f5/2 4f7/2 4p3/2 3d s 5p3/2

□ 2p3/2 □ 3d3/2 □ 3d3/2 □ 3p1/2 □ 3p3/2 □ 3s □ 4d □ 4d3/2 □ 4d3/2 □ 4f3/2 □ 4f1/2 □ 4p3/2 □ 4s □ 3p3/2

Matches from selected element and spectral line(s) search:

Eleme	ent <mark>Spectral Line</mark>	<u>Formula</u>	Energy (eV)	Details ?
Pt	4f5/2	cis-[PtC12(P(C6H5)3)2]	76.50	Click
Pt	4f5/2	Pt	74.40	Click
Pt	4f5/2	Pt3Ti	74.65	Click
Pt	4f5/2	Pt	74.50	Click
Pt	4f5/2	[PtCl2(P(C6H5)3)2]	76.50	Click
Pt	4f5/2	Pt	74.23	Click
Pt	4f5/2	(C6H4S4)2[Pt(S2C2O2)2]	75.25	Click
Pt	4f5/2	(C6H4S4)2(C6H4S4)[Pt(S2C2O2)2]	75.20	Click
Pt	4f5/2	O2/Pt3Ti	74.60	Click
Pt	4f5/2	O2/Pt3Ti	74.65	Click
Pt	4f5/2	O2/Pt3Ti	74.70	Click
Pt	4f5/2	Pt(C32H16N8)(C1O4)0.5	76.60	Click
Pt	4f5/2	N(C2H5)4[Pt(S2C2O2)2]	75.35	Click
Pt	4f5/2	Pt(C32H16N8)	76.60	Click
Pt	4f5/2	Pt/Ni	74.50	Click
Pt	4f5/2	Pt/Ni	74.55	Click
Pt	4f5/2	Pt/Ni	74.45	Click
Pt	4f5/2	Pt/Ni	74.40	Click
Pt	4f5/2	Pt/Ni	74.50	Click
Pt	4f5/2	Pt/Ni	74.55	Click
Pt	4f5/2	Pt/Ni	74.55	Click
Pt	4f5/2	[Pt(NH2(CH2)2NH(CH2)2NH2)I]I	78.20	Click
Pt	4f5/2	[Pt(NH2(CH2)2NH(CH2)2NH2)Cl]Cl	76.60	Click
Pt	4f5/2	[Pt(NH2(CH2)2NH(CH2)2NH2)CN]I	77.80	Click
Pt	4f5/2	[Pt(NH2(CH2)2NH(CH2)2NH2)NO3]NO3	76.30	Click
Pt	4f5/2	[Pt(NH2(CH2)2NH(CH2)2NH2)NO2]I	77.90	Click
Pt	4f5/2	[Pt2(P(C6H5)3)4SSCHC12]PF6	76.00	Click
Pt	4f5/2	Pt4H7Na41(AlO2)56(SiO2)136	75.20	Click
Pt	4f5/2	[Pt2(P(C6H5)3)4SSCH3]I	76.00	Click
Pt	4f5/2	[(Pt2(P(C6H5)3)4S2Cu)2(mu-dppf)][PF6]2	76.00	Click
Pt	4f5/2	[(Pt(P(C6H5)3)2S)2Hg(C6H5)2PCH2CH2P(C6H5)2)][PF6]2	76.10	Click
Pt	4f5/2	[(Pt(P(C6H5)3)2S)2Ni(C6H5)2PCH2CH2P(C6H5)2)][PF6]2	76.30	Click
Pt	4f5/2	PtS2	77.50	Click
Pt	4f5/2	[(Pt(P(C6H5)3)2S)2]	75.50	Click

[http://srdata.nist.gov/xps/Default.aspx]

Chemical shift

Fermi level

1s binding energy

Electron-nucleus

separation

Electronegativity effect

Chemical shift

Electronegativity effect: example

Functional Group		C 1s Binding Energy (eV)
hydrocarbon	<u>C</u> -H, <u>C</u> -C	285.0
amine	<u>C</u> -N	286.0
alcohol, ether	<u>C</u> -O-H, <u>C</u> -O-C	286.5
CI bound to C	<u>C</u> -CI	286.5
F bound to C	<u>C</u> -F	287.8
carbonyl	<u>C</u> =0	288.0

H 2.20			_	tivity V Eleme		
Li 0.98	Be 1.57	B 2.04	C 2.55	N 3.04	0 3.44	F 3.98
Na 0.90	Mg 1.31	Al 1.61	Si 1.90	P 2.19	S 2.58	CI 3.16
K 0.82	Ca 1.00	Ga 1.81	Ge 2.01	As 2.18	Se 2.55	Br 2.96

Chemical shift

Electronegativity effect: example (polymethylmethacrylate)

Chemical shift

Electronegativity effect: example (Al oxide)

Chemical shift

Lattice strain effect

Expansion

Film (Cr) becomes more electron poor.

Compression

Film (Au) becomes more electron rich.

Film (Au) a = 0.4078 nm Substrate (Cu) a = 0.3615 nm

Quantification

Sample

 I_i : intensity of i element = (electron/volume)(volume)

$$I_i = (N_i \sigma_i JT)(a\lambda_i \cos \theta)$$

Sample dependent terms

 N_i : number of atomes (#/cm³)

 σ_i : photoelectric cross-section (cm²)

 λ_i : inelastic mean free path (cm)

Instrument dependent terms

J: X-ray flux $(\#/\text{cm}^2 \cdot \text{s})$

T: analyzer transmission function

a: analysis area (cm²)

 θ : photoelectron emission angle

By assuming the concentration to be a relative ratio of atoms, instrument dependent term can be neglected.

$$N_i = I_i / \sigma_i T \lambda_i = I_i / S_i$$

Relative sensitivity factor $S_i := f(\sigma_i, T, \lambda_i)$

Quantification

Relative sensitivity factor (RSF)

$$N_i = I_i / \sigma_i T \lambda_i = I_i / S_i$$
 Relative sensitivity factor $S_i := f(\sigma_i, T, \lambda_i)$

Quantification

Example: Cr 2p spectrum

Cr 2p_{1/2} RSF: 3.60721

Cr 2p_{3/2} RSF: 6.9697

Quantification

Example: Cr 2p spectrum

Total area: 60098.5 Cr 2p RSF: 10.6041

Quantification

Example: Si XPS wide scan spectra

RSF

C 1s: 1.01548 O 1s: 2.97535 Si 2p: 0.82965

Quantification

Angle-resolved XPS: overlayer film vs. alloy

Quantification

Angle-resolved XPS: Si with native oxide

Imaging

Thickness

Thin overlayer film thickness calculation

Beer-Lambert relationship

$$I = I_0 \exp\left(-\frac{d}{\lambda \cos \theta}\right) \qquad d_A = \lambda_A \cos \theta \ln\left[1 + \frac{(I_A / S_A)}{(I_B / S_B)}\right]$$

Thickness

Ir thin overlayer film on Au substrate

Thin overlayer film

Thick overlayer film

Thickness

Ir thin overlayer film on Au substrate

Energy dispersive spectroscopy

Incident electron beam interaction with sample

Characteristic X-ray

ejected electron $\begin{matrix} K_{\beta} \\ K \end{matrix}$

Characteristic X-Ray

Energy of characteristic X-ray line $= E_{\text{final}} - E_{\text{initial}}$

Moseley's law

$$\lambda = \frac{B}{\left(Z - C\right)^2}$$

$$\Rightarrow \lambda \propto \frac{1}{Z^2}$$

λ: wavelength of characteristic X-ray

B, C: constant

Z: atomic number

Interaction volume

Electron beam energy effect

Interaction volume in iron (Fe) as a function of electron beam energy.

Interaction volume

Atomic number (Z) effect

Interaction volume

Atomic number (Z) effect

Instrumental image and schematic diagram

TEM schematic diagram

TEM image

EDS schematic diagram

Qualitative analysis

Quantitative analysis

Relative intensity of X-ray line family

Family	Approximate intrafmily weights
K	$K\alpha = 1 \ K\beta = 0.1$
L	$L\alpha = 1$ $L\beta_1 = 0.7$ $L\beta_2 = 0.2$ $L\gamma_1 = 0.08$ $L\gamma_2 = 0.03$
	$L\gamma_3 = 0.03 \ Ll = 0.04 \ L\eta = 0.01$
M	$M\alpha = 1 M\beta = 0.6 M\zeta = 0.06 M\gamma = 0.05 M_{II}N_{IV} = 0.01$

Quantitative analysis

Overlapping problem

Element	Interfering x-ray line	Interferes with	X-ray line interfered with
Ti	Κβ	v	Κα
V	Κβ	Cr	$K\alpha$
Cr	Κβ	Mn	$K\alpha$
Mn	Κβ	Fe	$K\alpha$
Fe	Κβ	Co	$K\alpha$
Pb	$M\alpha$	S	$K\alpha$
		Mo	$L\alpha$
Si	$K\alpha$	Ta	$M\alpha$
Ba	$L\alpha$	Ti	$K\alpha$

Quantitative analysis

Overlapping problem

Element in stain or fixative	Interfering x-ray line	Interferes with	X-ray line interfered with
U	М	K, Cu, Ti	Κα
		Cd, In, Sn, Sb, Ba	$L\alpha$
Os	M	Al, P, S, Cl	$K\alpha$
		Sr	$L\alpha$
Pb	M	S, Cl	$K\alpha$
		Mo	$L\alpha$
	L	As, Se	$K\alpha$
Ru	L	S, Cl, K	$K\alpha$
Ag	L	Cl, K	$K\alpha$
As	L	Na, Mg, Al	$K\alpha$
Cu (grid)	L	Na	Kα
	Biol	ogical elements	
K	Κβ	Ca	$K\alpha$
Zn	$L\alpha$	Na	$K\alpha$

Quantitative analysis

Solutions

Peak overlapping

Peak deconvolution

Weak peak intensity

Increase analysis time

Examples

Examples

Line scanning

Examples

Mapping

